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We report simple expressions for the exchange coupling in double quantum dots calculated within the
Heitler-London and the Hund-Mulliken approximations using four different confining potentials. At large
interdot distances and at large magnetic fields, the exchange coupling does not depend significantly on the
details of the potentials. In contrast, at low fields and short distances, different behaviors of the exchange
coupling can be attributed to particular features of the potentials. Our results may be useful as guidelines in
numerical studies and in the modeling of experiments.
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I. INTRODUCTION

The exchange coupling between electron spins in tunnel
coupled quantum dots constitutes a key element in proposals
for implementing quantum information processing in the
solid state.1,2 The exchange coupling splits the singlet and
triplet spin states, depending on the confining potential and
the applied magnetic field, thereby enabling electrical �or
magnetic� control of the exchange coupling as demonstrated
in recent experiments.3 The ability to control the exchange
coupling with external fields, however, also makes the ex-
change coupling susceptible to electromagnetic fluctuations
in the environment. A current trend is thus to search for
“sweet spots” in parameter space,4–7 i.e., local maxima of the
exchange coupling as function of external fields, where the
exchange coupling to first order is insensitive to fluctuations.

Calculations of the exchange coupling can be approached
with a variety of analytic and numerical methods. These in-
clude several analytic approximations2 and numerical
schemes such as exact diagonalization,8–11 path integral
Monte Carlo simulations,12 and configuration interaction cal-
culations combined with density functional theory.6 Numeri-
cal methods allow for calculations of the exchange coupling
with high precision. However, in order to gain an under-
standing of the dependence of the exchange coupling on dif-
ferent parameters or as guidelines in the search for sweet
spots,4–7 closed-form analytic expressions can be very use-
ful.

In this Brief Report, we present simple analytic expres-
sions for the exchange coupling of a double quantum dot
obtained within the Heitler-London and Hund-Mulliken
approximations2 for four different confining potentials. We
provide a comparative study of the exchange coupling calcu-
lated analytically for the four potentials as functions of inter-
dot distance and magnetic field. In particular, we identify
certain properties that are only weakly dependent on the
choice of potential and discuss other features that, in con-
trast, can be associated with particular details of the poten-
tials.

II. MODEL

We consider two electrons confined by a double quantum
dot in two dimensions in a perpendicular magnetic field. The
two-electron Hamiltonian is

H�r1,r2� = h�r1� + h�r2� + C��r1 − r2�� , �1�

where

C��r1 − r2�� =
e2

4��r�0�r1 − r2�
�2�

is the Coulomb interaction and the single-particle Hamil-
tonian in the effective-mass approximation is

h�r� =
1

2m
�p + eA�r��2 + V�r�, r = �x,y� . �3�

The confining potential is denoted as V�r�, m is the effective
electron mass, and A�r�=Bz�−y ,x� /2 the magnetic vector
potential. The Zeeman splitting does not affect the exchange
coupling and has been omitted above. We use parameters
typical of GaAs and take m=0.067me and �r=12.9. The ex-
change coupling JV�Bz�=ET−ES is the difference between
the spin-triplet and spin-singlet orbital ground states, respec-
tively.

The four potentials considered in this work are defined in
Fig. 1 with r0=�� /m�0 being the oscillator length, ��0 the
confinement energy, and 2d the center to center distance be-
tween the dots. The first three potentials have previously
been considered in the literature.2,5,7–13 The following ap-
proximations take as starting point the uncoupled dots at
large distances, d�r0. For the left or right dot centered at
rL/R= ��d ,0�, the ground state can be written14 as

��d�x ,y�= �r �L /R�=e�iyd/2lB
2
��x�d ,y� in terms of the Fock-

Darwin ground state ��x ,y�=�m�
�� e−m��x2+y2�/2�. Here, the

magnetic length is lB=�� /eBz and �=b�0, where b
=�1+�L

2 /�0
2 is the magnetic compression factor and �L

=eBz /2m the Larmor frequency. Additionally, we shall need

the overlap S	�L �R�=e−d̃2�2b−1/b�, where d̃=d /r0.
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III. HEITLER-LONDON

Within this approximation, the exchange coupling is esti-
mated as

J�HL� = �− �H�− � − �+ �H�+ � , �4�

where �� �= ��L��R�� �R��L�� /�2�1�S2�. The exchange cou-
pling is composed of contributions J�HL�=JC

�HL�+Jh
�HL� from

the Coulomb interaction and from the single-particle Hamil-
tonians, respectively. The first term JC

�HL� does not depend on
the potential and is given by Eq. �7� in Ref. 2. The second
term Jh

�HL� is listed in Table I for each of the four potentials.

The result for Vq has previously been reported in Ref. 2. The
Heitler-London approximation is typically reliable when the
ratio e2

4�	r	0r0
/��0 is small.13

IV. HUND-MULLIKEN

The Heitler-London approximation considers only the sin-
gly occupied singlet and triplet states. When the tunnel cou-
pling between the quantum dots becomes large, the doubly
occupied spin-singlet states should also be taken into ac-
count. The exchange coupling is then obtained by diagonal-
izing the Hamiltonian in the Hilbert space spanned by

�d

D �r1 ,r2�=��d�r1���d�r2� and 
�
S �r1 ,r2�

= ��+d�r1��−d�r2���−d�r1��+d�r2�� /�2, where ��d are the
orthonormalized single-particle states ��d= ���d

−g��d� /�1−2Sg+g2, with g= �1−�1−S2� /S. The exchange
coupling is now estimated as2

J�HM� = V − Ur/2 +
1

2
�Ur

2 + 16tr
2. �5�

Here, Ur and tr= t−w=−���d�h���d�− �
+
S�C�
�d

D � /�2 are
the renormalized on-site Coulomb interaction and tunnel
coupling, respectively, and V �not to be confused with the
confining potential� is the difference in Coulomb energy
between the singly occupied singlet and triplet states. We
find that the bare tunnel coupling can be written as t
=Jh

�HL��1+S2� /4S, where Jh
�HL� is given in Table I and Ur, w,

and V can be found in Appendix A of Ref. 2.

V. RESULTS

In Fig. 2, we show the exchange coupling J�HL� in the
Heitler-London approximation at zero magnetic field as
function of the interdot distance. We note that the exchange
coupling at zero magnetic field always must be nonnegative.
At large distances, d�r0, the potentials separate into two
isolated quantum dots with qualitatively similar behavior for
the exchange coupling, showing a decay with increasing in-
terdot distance. The potential Vmin results in a slightly lower
exchange coupling compared to the other potentials at a
given large interdot distance. At short distances, in contrast,
the results depend strongly on the particular choice of poten-
tial. For both confinement energies, the potential Vq yields
nonnegative results. However, at short distances, d
r0, the
exchange coupling for this potential diverges. In contrast, the
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FIG. 1. �Color online� Contour plots of the model potentials at
two different interdot distances. The potentials are Vi�x ,y�
	�m�0

2 /2�vi�x ,y�. The contours correspond to v�x ,y�=r0
2 /4 and

v�x ,y�=r0
2 /2. The potential vexp has been shifted such that

vexp��d ,0�=0.

TABLE I. Contribution Jh
�HL� to the exchange coupling within the Heitler-London approximation for the

four potentials. The complementary error function is denoted as erfc�x�, and d̃=d/r0.

Jh
�HL� / ���0�

Vq
2S2

1−S4
3

4b �1+bd̃2�

Vmin
2S2

1−S4 � 2d̃
�b�


1−e−bd̃2
�+2d̃2 erfc�d̃�b��

Vexp
2S2

1−S4 � d̃2

b2 − b
1+b 
1+e−4bd̃2/�1+b�−2e−d̃2/�b2+b���

Vq�
2S2

1−S4 �2d̃2− 25
2
�b�d̃3�e4bd̃2

erfc�2�bd̃�−Re
e�3+4i�bd̃2
erfc��2+ i��bd̃����
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three other potentials yield �unphysical� negative exchange
couplings �near the abrupt decreases of the exchange cou-
pling in the logarithmic plots� within the Heitler-London ap-
proximation at short distances and low confinement energies.
This behavior is well known for the Heitler-London
approximation.11,13 Eventually, the Heitler-London approxi-
mation also breaks down for the potential Vq and predicts a
negative exchange coupling, however, only at lower confine-
ment energies �not shown�. At large confinement energies,
the potentials Vmin and Vq� give nonnegative, finite values of
the exchange coupling at short distances.

In Fig. 3, we show results for the exchange coupling in
the Hund-Mulliken approximation at zero magnetic field. At
large distances, d�r0, the exchange coupling is again similar
for the four potentials. This behavior is further corroborated
by the inset of Fig. 3, showing the exchange coupling as
function of the bare tunnel coupling t. At large distances,
where the tunnel coupling is small, a clear t2 dependence is

found as expected in the Hubbard model picture. At short
distances, d�r0, and at low confinement energies, ��0
=3 meV, only the potential Vq gives nonnegative values of
the exchange coupling. However, at lower confinement ener-
gies, ��0=2 meV, the Hund-Mulliken approximation also
breaks down for this potential around d=r0 �dotted line in
Fig. 3�. At higher confinement energies, ��0=6 meV, all
potentials yield positive values of the exchange coupling.
Also in the Hund-Mulliken approximation, the potential Vq
results in a diverging exchange coupling at low interdot dis-
tances.

In order to explain the observed trends, we consider Eq.
�5� for the exchange coupling in the Hund-Mulliken approxi-
mation. At large confinement energies, the renormalized tun-
nel coupling may ensure a well-behaved limit at short inter-
dot distances. At the same time, a too small renormalized
tunnel coupling tr can result in negative values of the ex-
change coupling. In Fig. 4, we show the renormalized tunnel
coupling tr as function of the interdot distance. At large in-
terdot distances, the renormalized tunnel coupling is similar
for the four potentials, although somewhat smaller for Vmin.
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FIG. 5. �Color online� Exchange coupling in the Hund-Mulliken
approximation as function of the magnetic field �see Fig. 2 for
legend�. Results are shown for ��0=6 meV and two different in-
terdot distances.
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FIG. 2. �Color online� Exchange coupling in the Heitler-London
approximation as a function of the interdot distance. Two different
confinement strengths ��0 are used: continuous lines correspond to
��0=6meV while dashed lines have ��0=3meV.
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The smaller tunnel coupling is due to the height of the barrier
separating the two dots being larger for Vmin compared to the
other potentials. This explains the results for the exchange
coupling at large interdot distances within the Hund-
Mulliken approximation shown in Fig. 3. At short distances,
the potentials Vexp, Vmin, and Vq� yield qualitatively identical
results with well-behaved limits for the renormalized tunnel
coupling and, consequently, also well-behaved values for the
exchange couplings in Fig. 3. In contrast, the renormalized
tunnel coupling and the exchange energy diverge for Vq at
short interdot distances. The large renormalized tunnel cou-
pling at intermediate distances ensures positive values of the
exchange coupling in the Hund-Mulliken approximations,
but eventually leads to a diverging exchange energy at short
distances.

We attribute the divergence of the renormalized tunnel
coupling for Vq to the particular behavior of the potential at
short interdot distances. Unlike the three other potentials, the
potential Vq does not simplify to a single-dot potential at d
=0 �the potential Vexp already collapses into a single wide
dot at d�3r0 /4�. In fact, it contains a diverging term of the
form x4 /d2. To remedy this problem, we introduced the po-
tential Vq� with the modified denominator 4d2→4d2+x2. At
short interdot distances, we then have Vq��x ,0���x2

−d2�2 / �4d2+x2�→x2 corresponding to a single harmonic po-
tential. At large distances, d�r0, the potential Vq� is similar
to Vq, while the modified denominator ensures well-behaved
limits for the exchange coupling and the renormalized tunnel
coupling as illustrated in Figs. 3 and 4.

Finally, we turn to the magnetic field dependence of the
exchange coupling. The Hund-Mulliken approximation is
typically more reliable than the Heitler-London approxima-
tion in predicting the magnetic field dependence. In Fig. 5,
we consequently show Hund-Mulliken predications of the
exchange coupling as function of the applied magnetic field.

At large magnetic fields, the exchange coupling is similar for
the four potentials, whereas different behaviors are seen at
low fields, corresponding to the differences seen at zero mag-
netic field in Fig. 3. At large fields, magnetic compression
suppresses the tunnel coupling and we recover the J� t2 de-
pendence also seen at large interdot distances with zero mag-
netic field, as illustrated in the inset of Fig. 3. At short inter-
dot distances and small magnetic field, the exchange
coupling for Vq again blows up due to the diverging term in
the potential. In contrast, the behavior of the exchange cou-
pling corresponding to Vq� is again well behaved at small
fields as seen in the inset of Fig. 5.

VI. CONCLUSIONS

We have studied the exchange coupling between electron
spins in double quantum dots within the Heitler-London and
Hund-Mulliken approximations using four different confin-
ing potentials. At large interdot distances and at high mag-
netic fields, the exchange coupling is only weakly sensitive
to the details of the potentials. In contrast, at short interdot
distances, the exchange coupling depends on the choice of
potential. At short interdot distances and low magnetic fields,
the potential Vq yields a diverging exchange coupling. We
have slightly modified this potential in order to remedy this
problem. The simple expressions for the exchange coupling
presented in this work may by useful as guidelines in nu-
merical studies and in the modeling of experimental setups.
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